3.385 \(\int \tan ^2(e+f x) \sqrt{1+\tan (e+f x)} \, dx\)

Optimal. Leaf size=266 \[ \frac{\sqrt{\frac{1}{2} \left (1+\sqrt{2}\right )} \tan ^{-1}\left (\frac{\sqrt{2 \left (1+\sqrt{2}\right )}-2 \sqrt{\tan (e+f x)+1}}{\sqrt{2 \left (\sqrt{2}-1\right )}}\right )}{f}-\frac{\sqrt{\frac{1}{2} \left (1+\sqrt{2}\right )} \tan ^{-1}\left (\frac{2 \sqrt{\tan (e+f x)+1}+\sqrt{2 \left (1+\sqrt{2}\right )}}{\sqrt{2 \left (\sqrt{2}-1\right )}}\right )}{f}+\frac{2 (\tan (e+f x)+1)^{3/2}}{3 f}-\frac{\log \left (\tan (e+f x)-\sqrt{2 \left (1+\sqrt{2}\right )} \sqrt{\tan (e+f x)+1}+\sqrt{2}+1\right )}{2 \sqrt{2 \left (1+\sqrt{2}\right )} f}+\frac{\log \left (\tan (e+f x)+\sqrt{2 \left (1+\sqrt{2}\right )} \sqrt{\tan (e+f x)+1}+\sqrt{2}+1\right )}{2 \sqrt{2 \left (1+\sqrt{2}\right )} f} \]

[Out]

(Sqrt[(1 + Sqrt[2])/2]*ArcTan[(Sqrt[2*(1 + Sqrt[2])] - 2*Sqrt[1 + Tan[e + f*x]])/Sqrt[2*(-1 + Sqrt[2])]])/f -
(Sqrt[(1 + Sqrt[2])/2]*ArcTan[(Sqrt[2*(1 + Sqrt[2])] + 2*Sqrt[1 + Tan[e + f*x]])/Sqrt[2*(-1 + Sqrt[2])]])/f -
Log[1 + Sqrt[2] + Tan[e + f*x] - Sqrt[2*(1 + Sqrt[2])]*Sqrt[1 + Tan[e + f*x]]]/(2*Sqrt[2*(1 + Sqrt[2])]*f) + L
og[1 + Sqrt[2] + Tan[e + f*x] + Sqrt[2*(1 + Sqrt[2])]*Sqrt[1 + Tan[e + f*x]]]/(2*Sqrt[2*(1 + Sqrt[2])]*f) + (2
*(1 + Tan[e + f*x])^(3/2))/(3*f)

________________________________________________________________________________________

Rubi [A]  time = 0.2273, antiderivative size = 266, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.429, Rules used = {3543, 3485, 700, 1127, 1161, 618, 204, 1164, 628} \[ \frac{\sqrt{\frac{1}{2} \left (1+\sqrt{2}\right )} \tan ^{-1}\left (\frac{\sqrt{2 \left (1+\sqrt{2}\right )}-2 \sqrt{\tan (e+f x)+1}}{\sqrt{2 \left (\sqrt{2}-1\right )}}\right )}{f}-\frac{\sqrt{\frac{1}{2} \left (1+\sqrt{2}\right )} \tan ^{-1}\left (\frac{2 \sqrt{\tan (e+f x)+1}+\sqrt{2 \left (1+\sqrt{2}\right )}}{\sqrt{2 \left (\sqrt{2}-1\right )}}\right )}{f}+\frac{2 (\tan (e+f x)+1)^{3/2}}{3 f}-\frac{\log \left (\tan (e+f x)-\sqrt{2 \left (1+\sqrt{2}\right )} \sqrt{\tan (e+f x)+1}+\sqrt{2}+1\right )}{2 \sqrt{2 \left (1+\sqrt{2}\right )} f}+\frac{\log \left (\tan (e+f x)+\sqrt{2 \left (1+\sqrt{2}\right )} \sqrt{\tan (e+f x)+1}+\sqrt{2}+1\right )}{2 \sqrt{2 \left (1+\sqrt{2}\right )} f} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^2*Sqrt[1 + Tan[e + f*x]],x]

[Out]

(Sqrt[(1 + Sqrt[2])/2]*ArcTan[(Sqrt[2*(1 + Sqrt[2])] - 2*Sqrt[1 + Tan[e + f*x]])/Sqrt[2*(-1 + Sqrt[2])]])/f -
(Sqrt[(1 + Sqrt[2])/2]*ArcTan[(Sqrt[2*(1 + Sqrt[2])] + 2*Sqrt[1 + Tan[e + f*x]])/Sqrt[2*(-1 + Sqrt[2])]])/f -
Log[1 + Sqrt[2] + Tan[e + f*x] - Sqrt[2*(1 + Sqrt[2])]*Sqrt[1 + Tan[e + f*x]]]/(2*Sqrt[2*(1 + Sqrt[2])]*f) + L
og[1 + Sqrt[2] + Tan[e + f*x] + Sqrt[2*(1 + Sqrt[2])]*Sqrt[1 + Tan[e + f*x]]]/(2*Sqrt[2*(1 + Sqrt[2])]*f) + (2
*(1 + Tan[e + f*x])^(3/2))/(3*f)

Rule 3543

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
(d^2*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e + f*x])^m*Simp[c^2 - d^2 + 2*c*d*Tan[e
 + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ[m, -1] &&  !(EqQ[m, 2] && EqQ
[a, 0])

Rule 3485

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[(a + x)^n/(b^2 + x^2), x], x
, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 + b^2, 0]

Rule 700

Int[Sqrt[(d_) + (e_.)*(x_)]/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[2*e, Subst[Int[x^2/(c*d^2 + a*e^2 - 2*c*d
*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0]

Rule 1127

Int[(x_)^2/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, Dist[1/2, Int[(q + x^2)/(
a + b*x^2 + c*x^4), x], x] - Dist[1/2, Int[(q - x^2)/(a + b*x^2 + c*x^4), x], x]] /; FreeQ[{a, b, c}, x] && Lt
Q[b^2 - 4*a*c, 0] && PosQ[a*c]

Rule 1161

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e - b/c, 2]},
Dist[e/(2*c), Int[1/Simp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /
; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && (GtQ[(2*d)/e - b/c, 0] || ( !Lt
Q[(2*d)/e - b/c, 0] && EqQ[d - e*Rt[a/c, 2], 0]))

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1164

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e - b/c, 2]},
 Dist[e/(2*c*q), Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x
 - x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] &&  !GtQ[b^2
- 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \tan ^2(e+f x) \sqrt{1+\tan (e+f x)} \, dx &=\frac{2 (1+\tan (e+f x))^{3/2}}{3 f}-\int \sqrt{1+\tan (e+f x)} \, dx\\ &=\frac{2 (1+\tan (e+f x))^{3/2}}{3 f}-\frac{\operatorname{Subst}\left (\int \frac{\sqrt{1+x}}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{2 (1+\tan (e+f x))^{3/2}}{3 f}-\frac{2 \operatorname{Subst}\left (\int \frac{x^2}{2-2 x^2+x^4} \, dx,x,\sqrt{1+\tan (e+f x)}\right )}{f}\\ &=\frac{2 (1+\tan (e+f x))^{3/2}}{3 f}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2}-x^2}{2-2 x^2+x^4} \, dx,x,\sqrt{1+\tan (e+f x)}\right )}{f}-\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2}+x^2}{2-2 x^2+x^4} \, dx,x,\sqrt{1+\tan (e+f x)}\right )}{f}\\ &=\frac{2 (1+\tan (e+f x))^{3/2}}{3 f}-\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{2}-\sqrt{2 \left (1+\sqrt{2}\right )} x+x^2} \, dx,x,\sqrt{1+\tan (e+f x)}\right )}{2 f}-\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{2}+\sqrt{2 \left (1+\sqrt{2}\right )} x+x^2} \, dx,x,\sqrt{1+\tan (e+f x)}\right )}{2 f}-\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2 \left (1+\sqrt{2}\right )}+2 x}{-\sqrt{2}-\sqrt{2 \left (1+\sqrt{2}\right )} x-x^2} \, dx,x,\sqrt{1+\tan (e+f x)}\right )}{2 \sqrt{2 \left (1+\sqrt{2}\right )} f}-\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2 \left (1+\sqrt{2}\right )}-2 x}{-\sqrt{2}+\sqrt{2 \left (1+\sqrt{2}\right )} x-x^2} \, dx,x,\sqrt{1+\tan (e+f x)}\right )}{2 \sqrt{2 \left (1+\sqrt{2}\right )} f}\\ &=-\frac{\log \left (1+\sqrt{2}+\tan (e+f x)-\sqrt{2 \left (1+\sqrt{2}\right )} \sqrt{1+\tan (e+f x)}\right )}{2 \sqrt{2 \left (1+\sqrt{2}\right )} f}+\frac{\log \left (1+\sqrt{2}+\tan (e+f x)+\sqrt{2 \left (1+\sqrt{2}\right )} \sqrt{1+\tan (e+f x)}\right )}{2 \sqrt{2 \left (1+\sqrt{2}\right )} f}+\frac{2 (1+\tan (e+f x))^{3/2}}{3 f}+\frac{\operatorname{Subst}\left (\int \frac{1}{2 \left (1-\sqrt{2}\right )-x^2} \, dx,x,-\sqrt{2 \left (1+\sqrt{2}\right )}+2 \sqrt{1+\tan (e+f x)}\right )}{f}+\frac{\operatorname{Subst}\left (\int \frac{1}{2 \left (1-\sqrt{2}\right )-x^2} \, dx,x,\sqrt{2 \left (1+\sqrt{2}\right )}+2 \sqrt{1+\tan (e+f x)}\right )}{f}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt{2 \left (1+\sqrt{2}\right )}-2 \sqrt{1+\tan (e+f x)}}{\sqrt{2 \left (-1+\sqrt{2}\right )}}\right )}{\sqrt{2 \left (-1+\sqrt{2}\right )} f}-\frac{\tan ^{-1}\left (\frac{\sqrt{2 \left (1+\sqrt{2}\right )}+2 \sqrt{1+\tan (e+f x)}}{\sqrt{2 \left (-1+\sqrt{2}\right )}}\right )}{\sqrt{2 \left (-1+\sqrt{2}\right )} f}-\frac{\log \left (1+\sqrt{2}+\tan (e+f x)-\sqrt{2 \left (1+\sqrt{2}\right )} \sqrt{1+\tan (e+f x)}\right )}{2 \sqrt{2 \left (1+\sqrt{2}\right )} f}+\frac{\log \left (1+\sqrt{2}+\tan (e+f x)+\sqrt{2 \left (1+\sqrt{2}\right )} \sqrt{1+\tan (e+f x)}\right )}{2 \sqrt{2 \left (1+\sqrt{2}\right )} f}+\frac{2 (1+\tan (e+f x))^{3/2}}{3 f}\\ \end{align*}

Mathematica [C]  time = 0.162382, size = 86, normalized size = 0.32 \[ \frac{2 (\tan (e+f x)+1)^{3/2}+3 i \sqrt{1-i} \tanh ^{-1}\left (\frac{\sqrt{\tan (e+f x)+1}}{\sqrt{1-i}}\right )-3 i \sqrt{1+i} \tanh ^{-1}\left (\frac{\sqrt{\tan (e+f x)+1}}{\sqrt{1+i}}\right )}{3 f} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^2*Sqrt[1 + Tan[e + f*x]],x]

[Out]

((3*I)*Sqrt[1 - I]*ArcTanh[Sqrt[1 + Tan[e + f*x]]/Sqrt[1 - I]] - (3*I)*Sqrt[1 + I]*ArcTanh[Sqrt[1 + Tan[e + f*
x]]/Sqrt[1 + I]] + 2*(1 + Tan[e + f*x])^(3/2))/(3*f)

________________________________________________________________________________________

Maple [A]  time = 0.038, size = 305, normalized size = 1.2 \begin{align*}{\frac{2}{3\,f} \left ( 1+\tan \left ( fx+e \right ) \right ) ^{{\frac{3}{2}}}}-{\frac{\sqrt{2\,\sqrt{2}+2}\sqrt{2}}{4\,f}\ln \left ( 1+\sqrt{2}-\sqrt{2\,\sqrt{2}+2}\sqrt{1+\tan \left ( fx+e \right ) }+\tan \left ( fx+e \right ) \right ) }-{\frac{1}{f\sqrt{-2+2\,\sqrt{2}}}\arctan \left ({\frac{1}{\sqrt{-2+2\,\sqrt{2}}} \left ( 2\,\sqrt{1+\tan \left ( fx+e \right ) }-\sqrt{2\,\sqrt{2}+2} \right ) } \right ) }+{\frac{\sqrt{2\,\sqrt{2}+2}}{4\,f}\ln \left ( 1+\sqrt{2}-\sqrt{2\,\sqrt{2}+2}\sqrt{1+\tan \left ( fx+e \right ) }+\tan \left ( fx+e \right ) \right ) }+{\frac{\sqrt{2\,\sqrt{2}+2}\sqrt{2}}{4\,f}\ln \left ( 1+\sqrt{2}+\sqrt{2\,\sqrt{2}+2}\sqrt{1+\tan \left ( fx+e \right ) }+\tan \left ( fx+e \right ) \right ) }-{\frac{1}{f\sqrt{-2+2\,\sqrt{2}}}\arctan \left ({\frac{1}{\sqrt{-2+2\,\sqrt{2}}} \left ( \sqrt{2\,\sqrt{2}+2}+2\,\sqrt{1+\tan \left ( fx+e \right ) } \right ) } \right ) }-{\frac{\sqrt{2\,\sqrt{2}+2}}{4\,f}\ln \left ( 1+\sqrt{2}+\sqrt{2\,\sqrt{2}+2}\sqrt{1+\tan \left ( fx+e \right ) }+\tan \left ( fx+e \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+tan(f*x+e))^(1/2)*tan(f*x+e)^2,x)

[Out]

2/3*(1+tan(f*x+e))^(3/2)/f-1/4/f*(2*2^(1/2)+2)^(1/2)*2^(1/2)*ln(1+2^(1/2)-(2*2^(1/2)+2)^(1/2)*(1+tan(f*x+e))^(
1/2)+tan(f*x+e))-1/f/(-2+2*2^(1/2))^(1/2)*arctan((2*(1+tan(f*x+e))^(1/2)-(2*2^(1/2)+2)^(1/2))/(-2+2*2^(1/2))^(
1/2))+1/4/f*(2*2^(1/2)+2)^(1/2)*ln(1+2^(1/2)-(2*2^(1/2)+2)^(1/2)*(1+tan(f*x+e))^(1/2)+tan(f*x+e))+1/4/f*(2*2^(
1/2)+2)^(1/2)*2^(1/2)*ln(1+2^(1/2)+(2*2^(1/2)+2)^(1/2)*(1+tan(f*x+e))^(1/2)+tan(f*x+e))-1/f/(-2+2*2^(1/2))^(1/
2)*arctan(((2*2^(1/2)+2)^(1/2)+2*(1+tan(f*x+e))^(1/2))/(-2+2*2^(1/2))^(1/2))-1/4/f*(2*2^(1/2)+2)^(1/2)*ln(1+2^
(1/2)+(2*2^(1/2)+2)^(1/2)*(1+tan(f*x+e))^(1/2)+tan(f*x+e))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\tan \left (f x + e\right ) + 1} \tan \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+tan(f*x+e))^(1/2)*tan(f*x+e)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(tan(f*x + e) + 1)*tan(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [B]  time = 1.9551, size = 2539, normalized size = 9.55 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+tan(f*x+e))^(1/2)*tan(f*x+e)^2,x, algorithm="fricas")

[Out]

1/24*(12*2^(3/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*f*(f^(-4))^(1/4)*arctan(1/2*2^(3/4)*sqrt(1/2)*sqrt(2*sqr
t(2)*f^2*sqrt(f^(-4)) + 4)*f^5*sqrt((2^(3/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*f^3*sqrt((cos(f*x + e) + sin
(f*x + e))/cos(f*x + e))*(f^(-4))^(3/4)*cos(f*x + e) + 2*sqrt(2)*f^2*sqrt(f^(-4))*cos(f*x + e) + 2*cos(f*x + e
) + 2*sin(f*x + e))/cos(f*x + e))*(f^(-4))^(5/4) - 1/2*2^(3/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*f^5*sqrt((
cos(f*x + e) + sin(f*x + e))/cos(f*x + e))*(f^(-4))^(5/4) - f^2*sqrt(f^(-4)) - sqrt(2))*cos(f*x + e) + 12*2^(3
/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*f*(f^(-4))^(1/4)*arctan(1/2*2^(3/4)*sqrt(1/2)*sqrt(2*sqrt(2)*f^2*sqrt
(f^(-4)) + 4)*f^5*sqrt(-(2^(3/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*f^3*sqrt((cos(f*x + e) + sin(f*x + e))/c
os(f*x + e))*(f^(-4))^(3/4)*cos(f*x + e) - 2*sqrt(2)*f^2*sqrt(f^(-4))*cos(f*x + e) - 2*cos(f*x + e) - 2*sin(f*
x + e))/cos(f*x + e))*(f^(-4))^(5/4) - 1/2*2^(3/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*f^5*sqrt((cos(f*x + e)
 + sin(f*x + e))/cos(f*x + e))*(f^(-4))^(5/4) + f^2*sqrt(f^(-4)) + sqrt(2))*cos(f*x + e) - 3*2^(1/4)*(sqrt(2)*
f^3*sqrt(f^(-4))*cos(f*x + e) - 2*f*cos(f*x + e))*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*(f^(-4))^(1/4)*log(1/2*
(2^(3/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*f^3*sqrt((cos(f*x + e) + sin(f*x + e))/cos(f*x + e))*(f^(-4))^(3
/4)*cos(f*x + e) + 2*sqrt(2)*f^2*sqrt(f^(-4))*cos(f*x + e) + 2*cos(f*x + e) + 2*sin(f*x + e))/cos(f*x + e)) +
3*2^(1/4)*(sqrt(2)*f^3*sqrt(f^(-4))*cos(f*x + e) - 2*f*cos(f*x + e))*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*(f^(
-4))^(1/4)*log(-1/2*(2^(3/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*f^3*sqrt((cos(f*x + e) + sin(f*x + e))/cos(f
*x + e))*(f^(-4))^(3/4)*cos(f*x + e) - 2*sqrt(2)*f^2*sqrt(f^(-4))*cos(f*x + e) - 2*cos(f*x + e) - 2*sin(f*x +
e))/cos(f*x + e)) + 16*sqrt((cos(f*x + e) + sin(f*x + e))/cos(f*x + e))*(cos(f*x + e) + sin(f*x + e)))/(f*cos(
f*x + e))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\tan{\left (e + f x \right )} + 1} \tan ^{2}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+tan(f*x+e))**(1/2)*tan(f*x+e)**2,x)

[Out]

Integral(sqrt(tan(e + f*x) + 1)*tan(e + f*x)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\tan \left (f x + e\right ) + 1} \tan \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+tan(f*x+e))^(1/2)*tan(f*x+e)^2,x, algorithm="giac")

[Out]

integrate(sqrt(tan(f*x + e) + 1)*tan(f*x + e)^2, x)